

Panel 3 (a) Diesel Rail Services – Introduction

RAILENERGY Final Conference

Brussels

November 25th, 2010

Dr. Roland Nolte

IZT Institute for Futures Studies and Technology Assessment

Fleet development & Fleet renewal

November 25th, 2010

Production in train-km – Share of Traction Type (2008)

Production share per traction type for Passenger transport

Brussels November 25th, 2010 **Railenergy Final Conference**

Electrification

November 25th, 2010

Energy Consumption of Diesel Rail Services

18.000-16.000-Share of Final Energy 14.000 12.000-10.000 20% Diesel GWh 8.000 E-Traction 6.000 4.000 2.000 0-Highspeed Freight Intercity Regional Service Type

Final Energy Consumption per Service Type

Brussels November 25th, 2010 **Railenergy Final Conference**

80%

Importance of Diesel traction & Framework for Energy Savings (1)

- > About 45% of European Networks are not electrified
- > Electrification rate is low
- Diesel Traction consumes 20% of total final energy & produces 23% of pass train km
- Diesel traction will still be significant in 2020

Importance of Diesel traction & Framework for Energy Savings (2)

- Since fleet renewal until 2020 is small, the biggest saving potential for this time horizon have
 - Operational measures

• Efficiency Technologies for existing rolling stock

 Following presentations: Overview and concrete examples for energy efficiency technologies

Panel 3 (b) Innovative Diesel Components

on behalf of

Christian Lauszat

Bombardier Transportation GmbH christian.lauszat@de.transport.bombardier.com

Innovative Diesel Components – Overview

Technologies investigated in RAILENERGY:

oUse of waste heat for climatisation

- Absorption refrigeration technology
- o Permanent Magnet Technology

• Permanent magnet excited (PM) generator and traction motor

oOn-board energy storage

• Batteries, flyweels, supercaps, combinations (battery + supercap)

• Hybrid diesel electric propulsion system

• PM technology combined with an on-board energy storage

Main achievements - Use of waste heat

- Use the waste heat from exhaust air of the diesel engine for air conditioning (heating and cooling)
- Laboratory status for mobile applications, available for stationary use
- Additional weight, complex system, cooling power limited by ambient temperature, could be used for mild climate
- o Fair saving potential
- Pure waste heat used
 for heating is best practise

Brussels November 25th, 2010

- Traction generator + traction motor in PM technology
- Higher efficiency, increased torque and power density and lower mass compared to induction machines
- PM motor tested in several prototypes (i.e.Gröna Tåget)
- Technology available for new projects (i.e. power pack for Desiro ML, traction motors for DD SBB-FV)
- Suitable for DMU's
- Good saving potentials

Brussels November 25th, 2010

- Most suitable technology for DEMU: supercaps
- Already in operation in LRV service
- Additional power for acceleration
 - Compensate for time delays
 - Apply coasting in case of time reserve
- Best for frequent stops, short distances
- Promising saving potential in Regional service

Brussels November 25th, 2010

Main achievements - Diesel hybrid

- Combination of PM technology and supercap
- Optimisation of the efficiency for acceleration and deceleration
- Best for frequent stops, short distances
- Promising saving potential in Regional service

Brussels November 25th, 2010 Railenergy Final Conference

Conclusions & Outlook

- Use of waste heat for heating state of the art and best practise
- PM technology offers additional energy savings (wide range of applications)
- On-board energy storage very promising for Regional service
- Combination of PM technology and on-board energy storage leads to higher overall savings

Brussels November 25th, 2010 **Railenergy Final Conference**